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Abstract. We present an experimental analysis of neighborhood com-
binations for local search based metaheuristic algorithms, using the Un-
constrained Binary Quadratic Programming (UBQP) problem as a case
study. The goal of the analysis is to help understand why, when and
how some neighborhoods can be favorably combined to increase their
search power. Our study investigates combined neighborhoods with two
types of moves for the UBQP problem within a Tabu Search algorithm
to determine which strategies for combining neighborhoods prove most
valuable.
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1 Introduction

Neighborhood search or local search is known to be a highly effective meta-
heuristic framework for solving a large number of constraint satisfaction and
optimization problems. By defining a neighborhood and starting from an initial
solution, local search progressively explores the neighborhood of the present so-
lution for improvement. In this way, the current solution is iteratively replaced
by one of its neighbors (often improving) until a specific stop criterion is satisfied.

One of the most important features of local search is the definition of its
neighborhood. In general, good neighborhoods offer a high search capability and
consequently lead to good results largely independent of the initial solution while
the search performance induced by weak neighborhoods is often highly correlated
to the initial solution [37]. Generally, a local optimum for one neighborhood is not
necessarily a local optimum for another. Therefore, it is possible and interesting
to create more powerful combined neighborhoods.

Using the Unconstrained Binary Quadratic Programming (UBQP) problem
as a case study, we present in this work several combinations of neighborhoods,
using one-flip and two-flip moves. The two-flip move proposed in this paper is new
for the UBQP problem. To evaluate their performance, we carried out extensive
experiments with a Tabu Search algorithm run on a large set of benchmark
instances. Computational results show that certain combinations are superior to
others.



The remaining part of this paper is organized as follows. Section 2 gives the
description of the UBQP problem together with its recent advances. In Section
3, the one-flip and two-flip moves and their fast evaluation techniques are fully
described. Sections 4 is dedicated to several neighborhood combinations and our
Tabu Search algorithm. In Section 5, we present our computational comparison
on these neighborhoods and their combinations, and draw inferences from these
findings about the factors that cause certain neighborhood combinations to be
effective or ineffective. Finally in Section 6, we provide some conclusions and
discuss some important issues related to this work.

2 Unconstrained Binary Quadratic Programming

The unconstrained binary quadratic programming problem may be written as:

UBQP: Maximize z, = zQx’

x binary

where @ is an n X n matrix of constants and x is an n-vector of binary (zero-one)
variables.

In recent decades, the UBQP formulation has attracted wide attention for
its ability to represent a wide range of important problems, including those from
social psychology [20], financial analysis [27,31], computer aided design [26],
traffic management [11,41], machine scheduling [1], cellular radio channel allo-
cation [9] and molecular conformation [40]. Moreover, the application potential
of UBQP is much greater than might be imagined, due to the possibilities of im-
posing quadratic infeasibility constraints into the objective function in an explicit
manner. For instance, many combinatorial optimization problems pertaining to
graphs such as determining maximum cliques, maximum cuts, maximum vertex
packing, minimum coverings, maximum independent sets, maximum indepen-
dent weighted sets are known to be capable of being formulated by the UBQP
problem as documented in papers of [38,39]. A review of additional applications
and formulations can be found in [2,24, 25, 28].

For the UBQP problem, many exact algorithms have been proposed. The
most successful approaches include those of [5,21, 38]. However, due to its com-
putational complexity, exact algorithms can only solve instances of small size
(with 100 variables). Therefore, a large number of heuristic and metaheuristic
solution procedures have been reported in the literature to handle large instances.
Some representative examples include local search based approaches such as Sim-
ulated Annealing [3,7,22] and Tabu Search [7,17,18, 35, 36], population-based
approaches such as Evolutionary Algorithms [8, 23, 29, 32|, Scatter Search [4] and
Memetic Algorithms [33].



3 Neighborhood Moves and Fast Evaluation

In a local search procedure, applying a move mv to a candidate solution x
leads to a new solution denoted by @ muv. Let M (x) be the set of all possible
moves which can be applied to z, then the neighborhood N B of z is defined by:
NB(xz) = {z @ mvjmv € M(z)}. For the UBQP problem, we use two distinct
moves denoted by one-flip and two-flip moves. In the following, we respectively
denote the neighborhoods with one-flip and two-flip moves Ny and Ns.

3.1 One-flip move

The one-flip move defining neighborhood N complements (flips) a chosen binary
variable x; by subtracting its current value from 1, i.e., the value of variable x;
becomes 1 — z; after a one-flip move. One-flip is widely used in local search
algorithms for binary problems such as UBQP, multi-dimensional knapsack and
satisfiability problems.

Let N = {1,...,n} denote the index set for components of the z vector.
We preprocess the matrix @ to put it in lower triangular form by redefining
(if necessary) g¢i; = ¢ij + ¢;; for ¢ > j, which is implicitly accompanied by
setting ¢;; = 0 (though these 0 entries above the main diagonal are not stored
or accessed). Let A; be the move value of flipping the variable z;, and let q; ;)
be a shorthand for denoting ¢;; if i > j and gj; if j > i. Then each move value
can be calculated in linear time using the formula:

Ay =(1—2x;)(qi + Z 4G.5)) (1)

JEN,j#i,x ;=1

For large problem instances, it is imperative to be able to rapidly determine
the effect of a move on the objective function x,. For this purpose, we employ a
fast incremental evaluation technique first introduced by [17] and enhanced by
[13] to exploit an improved representation and to take advantage of sparse data
- a characteristic of many real world problems. The procedure maintains a data
structure that stores the move value (change in z,) for each possible move, and
employs a streamlined calculation for updating this data structure after each
iteration.

Moreover, it is not necessary to recalculate all the move values after a move.
Instead, one needs just to update a subset of move values affected by the move.
More precisely, it is possible to update the move values upon flipping a variable
x; by performing the following abbreviated calculation:

1. A, = -4,
2. For each j € N — {i},
Aj = Aj+0ij 4
where 0;; = 1 if x; = x;, 055 = —1 otherwise.

We employ the convention that x; represents x;’s value before being flipped.



3.2 Two-flip move

In the case of a two-flip neighborhood N», we are interested in the change in
Z, that results by flipping 2 variables, z; and z;, and will refer to this change
by 0;;. It is convenient to think of the two-flip process as a combination of two
single one-flip moves, and we can derive J;; using the one-flip move values A;
and A; as follows (supposing ¢ > j):

0ij = Ai + A5 + Nij a5 (2)
where \j; = 1if 2; = x; and A\;; = —1 otherwise.

It is easy to observe that the size of neighborhood Ny is bounded by O(n?).
After a two-flip move is performed (suppose variables z; and z; are flipped),
we need only update the one-flip delta array A that is affected by this move.
Specifically, the following abbreviated calculation can be performed:

1. Az = _(Az + O'ij (J(i)j))
2. 4j = —(4; +0ij 4ij))
3. For each k € N — {i,7},
Ap = Ak + ik Qi k) + Tk q0,k)
where o4, = 1 if @, = a2, (u,v = {i,5,k}), 0wy = —1 otherwise.

Here x; and z; represent x; and x;’s values before being flipped.

One finds that the complexity of this updating rule is O(n), i.e., at most
n delta values are recalculated each time. Accompanying this updating rule, it
is possible to introduce additional data structures to speed up the process of
identifying the best two-flip move for the next iteration. Interested readers are
referred to [14] for more details.

In spite of the linear time complexity of the updating rule after a move is
performed, it is still too time-consuming to examine all the two-flip moves using
formula (2) since the two-flip neighborhood N; has n(n — 1)/2 neighbors at
each iteration. To overcome this obstacle, we employ a candidate list strategy to
reduce the number of candidates in the neighborhood by examining only a small
subset of all the possible two-flip moves. Specifically, at each iteration, we sort
all the one-flip A values in a decreasing order. Then, the two-flip move that flips
x; and x; will be considered only if the values of both A; and A; ranks the first
B best. In this paper, we empirically set 8 = 3y/n which gives satisfying results
without sacrificing solution quality. The greater the value of 3, the greater will
be the number of two-flip neighborhood moves examined and the amount of
CPU time required. Notice that if this candidate list strategy is disabled in Ny,
the computation will be greater than that required by the one-flip neighborhood
Ni.

4 Neighborhood Combinations and Algorithm

4.1 Neighborhood Combinations

In order to increase the search capability of single neighborhoods, it has become a
popular practice to combine two or more different neighborhoods. The advantage



of such an approach was demonstrated using a tabu search strategic oscillation
design in [16], and additional variants of strategic oscillation for transitioning
among alternative neighborhoods are discussed in [12]. More recently, the meta-
heuristic approach called Variable Neighborhood Search in [34] has effectively
used a transition scheme that always returns to the simplest neighborhood when
improvement occurs, while the transition scheme that cycles through higher lev-
els before returning to the simplest (also studied in [16]) was examined in [10]
and elaborated more fully in the metaheuristic context in [19].

Several ways exist for combining different neighborhoods. In this paper, we
focus on two of them: neighborhood union and token-ring search [10, 30].

We define two forms of neighborhood union: strong neighborhood union and
selective neighborhood union. For strong neighborhood union, denoted by N;LINs,
the algorithm picks each move (according to the algorithm’s selection criteria)
from all the N; and Ny moves. For selective neighborhood union, denoted by
N1UN3, the search algorithm selects one of the two neighborhoods to be used
at each iteration, choosing the neighborhood N7 with a predefined probability p
and choosing Ny with probability 1-p. An algorithm using only N; or Nj is of
course a special case of an algorithm using N1UNs where p is set to be 1 and 0
respectively.

In token-ring search, the neighborhoods are alternated, applying the cur-
rently selected neighborhood without interruption, starting from the local op-
timum of the previous neighborhood, until no improvement is possible. More
precisely, the search procedure uses one neighborhood until a best local opti-
mum is determined, subject to time or iteration limits imposed on the search
(For metaheuristic searches, this may not be the first local optimum encoun-
tered.) The best local optimum here denotes the best solution found so far by
the current search. Then the method switches to the other neighborhood, start-
ing from this local optimum, and continues the search in the same fashion. The
search comes back to the first neighborhood at the end of the second neighbor-
hood exploration, repeating this process until no improvement is possible. The
token-ring search of two neighborhoods can be denoted as N;— N (starting from
Ny) or No—Nj (starting from Na). More details are given in [30].

4.2 Tabu Search Algorithm

For the purpose of studying the different neighborhoods and their combinations,
we implement a simple Tabu Search (TS) algorithm [15]. TS typically incorpo-
rates a tabu list as a “recency-based” memory structure to assure that solutions
visited within a certain span of iterations, called the tabu tenure, will not be
revisited. The approach is designed to introduce vigor into the search by also for-
bidding moves leading to related solutions that share certain attributes (values
of variables) in common with the visited solutions. In present implementation,
each time a variable z; is flipped, this variable enters into the tabu list (an
n-vector TabuTenure) and cannot be flipped for the next TabuTenure(i) iter-
ations (TabuTenure(i) is the “tabu tenure”). For the current study, we elected
to set



TabuTenure(i) = C + rand(10) (3)

where C' is a given constant and rand(10) takes a random value from 1 to 10.

For the one-flip neighborhood, our TS algorithm then restricts consideration
to variables not forbidden by the tabu list, and selects a variable to flip that
produces the largest A; value (thus improving z, if this value is positive). In
the case that two or more moves have the same best move value, a random best
move is selected. For the two-flip neighborhood, a move is declared tabu if and
only if both two flipping variables are in tabu status.

However, some of those neighborhood solutions forbidden by the tabu list
might be of excellent quality and might not have been visited. To mitigate this
problem, a simple aspiration criterion is applied that permits a move to be
selected in spite of being tabu if it leads to a solution better than the current
best solution.

In the case that TS procedure is applied to a token ring search (denoted
N;— Ny for our two neighborhoods case), we start the TS procedure with neigh-
borhood Nj. Since we need to search the two neighborhoods alternately, the
application of TS to a single neighborhood stops when the best solution cannot
be improved within a given number 6 of moves and we call this number the im-
provement cutoff of TS, which we empirically set to be a relatively small value
(50,000 for all the tested instances).

5 Experimental Results

In this Section, we show computational results for our simple T'S algorithm using
the following neighborhoods and neighborhood combinations: N (one-flip), Ny
(two-flip), N1UN> (selective union) with p = 0.5, N1UNy (strong union) and
N;— Ny (token-ring).

5.1 Test Instances and Experimental Protocol

Two sets of test problems are considered in our experiments. The first set of
benchmarks is composed of the 10 largest instances of size n = 2500 introduced
in [7] and available in the ORLIB [6]. These instances are used in the literature by
many authors (e.g., [7, 22,33, 35, 36]). The second set of benchmarks consists of a
set of 15 randomly generated large problem instances named p3000.1,. . .,p5000.5
with sizes ranging from n=3000 to 5000 [35, 36]. These instances are available
at: http://www.soften.ktu.lt/~gintaras/ubqop_its.html.

Our algorithm is programmed in C and compiled using GNU GCC on a PC
running Windows XP with Pentium 2.66GHz CPU and 512M RAM. For each
run of the TS algorithm, the initial solution is generated randomly, i.e., each
variable x; receives a random value of 0 or 1 with equal chance. Given this
stochastic nature of our TS procedure, each problem instance is independently
solved 20 times. To make the comparison as fair as possible, all the experiments



use the same CPU time limits: for the 10 Beasley instances with 2500 variables,
the CPU time limit is set to be 1000 seconds while it is set to be 2000 seconds
for other 15 larger instances.

5.2 Computational Comparison

Table 1. Results of the TS algorithm on the 10 Beasley instances with size n=2,500
within 1000 seconds.

instance | dens Sorev solution gaps to fprev (fprev — f)
Ny No N1iUN> NiUNs N;i—Ns

b2500.1 0.1 1515944 0 4.2 0 94.0 0
b2500.2 0.1 1471392 0 12.1 0 65.1 0
b2500.3 0.1 1414192 94.1 1.4 0 301.2 0
b2500.4 0.1 1507701 0 0 0 0 0
b2500.5 0.1 1491816 0 0 0 0 0
b2500.6 0.1 1469162 0 1.3 0 82.1 0
b2500.7 0.1 1479040 35.7 1.3 0 122.5 0
b2500.8 0.1 1484199 0 8.2 0 10.2 3.5
b2500.9 0.1 1482413 0 10.9 0 1.9 0
b2500.10 | 0.1 1483355 0 4.0 0 0 0
average 12.98 4.34 0 67.7 0.35

Average Results Comparison Table 1 shows the computational statistics of
the TS algorithm on the 10 Beasley instances with 2500 variables. Columns 2
and 3 respectively give the density (dens) and the best known objective values
(fprev) obtained from the literature. Columns 4 to 8 give the solution gap to the
best solutions for each neighborhood and neighborhood combination. For each
instance, the solution gap in Table 1 is represented as fpreo — f, where f is the
average objective value obtained by 20 independents runs and fy,.., represents
the previous best known objective value. The overall results, averaged over 10
instances, are presented in the last row.

From Table 1, we observe that neighborhood N; reaches the previous best
known results very stably for 8 of the 10 instances while it performs quite poorly
on other two cases. On the other hand, neighborhood N> can obtain the pre-
vious best known results each time only for two instances, but obtains optimal
or near-optimal solutions with quite small variance for other cases. In terms
of the average gaps to the previous best solutions, neighborhood Ny slightly
outperforms N; for these 10 test problems.

When comparing the three neighborhood combinations NyUN; (with p =
0.5), N1UNy and N;—Ns with each other, one finds that the selective union
NjUNs and the token-ring search N;— Ny are superior to the strong union
N1UNs, as well as the single neighborhoods N7 and Ns. One also observes that
the strong union N;LINy performs much worse than the single neighborhood Ny,
implying that the strong union is not an appropriate way of combination for
these two neighborhoods. For each pairwise comparison of these neighborhoods,



we performed a 95% confidence t-test to compare their solution quality, leading
to the following ranking of the neighborhoods: for single neighborhoods N> N
while N7UN3y>N;— No>N;LIN, for neighborhood combinations.

Table 2. Results of the TS algorithm on the 15 large random instances with variables
ranging from 3000 to 5000 within 2000 seconds.

instance | dens Sorev solution gaps to forew (forev — f)

Ny Ny N1UN>  NiUN> Ni—No
p3000.1 0.5 3931583 319.8 8.8 103.4 1866.7 435.0
p3000.2 | 0.8 5193073 418.6 103.5 193.2 214.7 120.7
p3000.3 | 0.8 5111533 482.7 637.6 488.7 508.9 607.2

p3000.4 | 1.0 5761822 77.0 38.6 0 630.1 57.7
p3000.5 1.0 5675625 460.4 385.3 223.8 738.0 655.0
p4000.1 | 0.5 6181830 0 15.2 0 1249.3 0

p4000.2 | 0.8 7801355 1732.1  1364.5 402.2 2683.4  1622.7
p4000.3 | 0.8 7741685 1427.9 474.1 445.1 1742.0 936.1

p4000.4 | 1.0 8711822 1516.3 276.8 438.1 1954.1  1359.4
p4000.5 1.0 8908979 2979.9 372.5 397.4 3063.2  2723.7
p5000.1 | 0.5 8559355 2957.9  1287.3 1153.6 41184  2365.4
p5000.2 | 0.8 10836019  3561.5 2232.6 2716.5 3839.8  3263.0
p5000.3 | 0.8 10489137  8451.0 4156.4 3054.0 9634.5 3124.5
p5000.4 1.0 12252318  4760.2  3261.0 22154  9276.1  3416.3
p5000.5 1.0 12731803  6327.0 1369.3 1472.8 4863.2 6093.6
average 2364.82 1065.57 886.95 3091.49 1785.35

Similarly, the computational results of the TS algorithm on the 15 larger
and denser random instances are shown in Table 2. The symbols are the same
as those in Table 1. Once again, we observe that neighborhood N5 outperforms
N; except for two instances (p3000.4 and p4000.1) in terms of the average gaps
to the previous best known objective values. In addition, the selective union
N71UNs is superior to other two neighborhood combinations. We also performed
a 95% confidence t-test to compare different neighborhoods and observed that
Ny>N; for single neighborhoods while NyUNy>N;— No>N;LIN, for neighbor-
hood combinations. These results coincide well with the results observed on the
10 Beasley instances with 2500 variables.

Best Results Comparison We now turn our attention to the best results that
the TS algorithm obtains in the preceding experiments. Note that there is no
difficulty to obtain the previous best known results for each neighborhood or
neighborhood combination for all the 10 instances with 2500 variables. Thus, we
only list in Table 3 the best results of the TS algorithm on the 15 larger instances.
Columns 2 and 3 recall the density (dens) and the best known objective values
(fprev) obtained from the literature. Columns 4 to 8 give the solution gap to
the best solutions for each neighborhood and neighborhood combination, where
frest represents the best objective value obtained over 20 independents runs.



Table 3. Best results of the TS algorithm over 20 independent runs.

instance | dens Sorev solution gaps to fprev (fprev — foest)
N1 N2 N1UN2 N1|JN2 N1—>N2

p3000.1 0.5 3931583 0 0 0 0 0
p3000.2 | 0.8 5193073 0 0 0 0 0
p3000.3 | 0.8 5111533 0 0 0 0 0
p3000.4 1.0 5761822 0 0 0 0 0
p3000.5 1.0 5675625 0 0 0 0 0
p4000.1 0.5 6181830 0 0 0 0 0
p4000.2 | 0.8 7801355 0 0 0 1686 0
p4000.3 0.8 7741685 0 0 0 0 0
p4000.4 1.0 8711822 0 0 0 0 0
p4000.5 1.0 8908979 0 0 0 0 0
p5000.1 0.5 8559355 0 -325 -325 0 0
p5000.2 | 0.8 10836019 582 65 0 582 0
p5000.3 | 0.8 10489137 354 148 148 683 663
p5000.4 1.0 12252318 608 0 0 2400 0
p5000.5 1.0 12731803 1025 0 0 0 0
average 256.9 -11.2 -17.7 366.5 66.3

Once again, the overall results averaged over 15 instances are presented in the
last row.

Table 3 shows that the selective union N1UN; performs much better than
the strong union N;LIN,, the token-ring search N;— Ny and the single neigh-
borhoods Nj, and even slightly better than No. One also observes that for the
15 larger instances, the TS algorithm with N7UN,; matches the previous best
results for 13 of them, while getting a worse result only for one instance and a
better result for the remaining one. It should be noticed that the selective union
N1UN> and the single neighborhood Ny both improve the best result obtained
by [36] for instance p5000.1, showing the advantage of the newly introduced
neighborhood N5 over N; and the combination mechanism of selective union.
According to these results, we have the following ranking of the neighborhoods:
N{UNy>Ny>N1— No>Ny>N;UNs. The trends of the best costs perfectly match
those of the average costs mentioned above for the considered instances.

Results Analysis The preceding computational results show that for the three
neighborhood combinations of N7 and Ns, the selective union NyUNs produces
much better results than other combinations. These results prompt us to focus
on investigating the best and worst neighborhood combinations: N;UNy and
NUNs. In this section, we attempt to explain what causes the effectiveness
and weakness of these two neighborhood unions and show evidence for this phe-
nomenon in terms of three evaluation criteria. For this purpose, we employ a
steepest descent (SD) algorithm for this experiment, where we disable the tabu
list of our TS algorithm and the current solution is repeatedly replaced by a best
improving solution in its neighborhood until no improving neighbor exists. The
experiment is carried out on the large instance p5000.3 (very similar results are
observed for other instances).



In [30], three evaluation criteria were employed to characterize the search
capacity of a neighborhood: percentage of improving neighbors, improvement
strength and search steps. The authors argue that good neighborhoods should
have one or more of these features: high percentage of improving neighbors (for
more improvement possibilities), strong improvement strength (for important
improvements) and long search steps (for long term improvements).

For a candidate solution z, a given neighborhood function NB : X —2% and
a neighborhood solution 2’ € NB(z), define Af = f(z') — f(x). These criteria
are then defined as follows.

— Improving neighbors I(x): the set of the improving neighbors in the neigh-
borhood NB(x) given by I(z) = {2’ € NB(x)|Af > 0}. Therefore, the
percentage of improving neighbors is defined as |I(x)|/|NB(z)| x 100%.

— Improvement strength Af*: the cost variation between the current solution
2 and a best improving neighbor given by Af* = max{|Af|: Af € I(x)}.

— Search steps: the term search steps is defined as the number of iterations
that the SD algorithm can run to reach a local optimum.

To calculate the values of each criterion, we run the SD algorithm for 50
independent runs respectively with NyUN; and N;UN,. For each run, data cor-
responding to the above three evaluation criteria are calculated; percentage of
improving neighbors and improvement strength values are collected at each iter-
ation while search steps is simply the iteration number when SD stops. All the
reported results correspond to the averages obtained for these 50 independent
runs.

Figure 1 presents the percentage of improving neighbors for N;UN,; and
N1UNs, evolving with the local search iterations. It shows that at the beginning
of the local search, the percentage of improving neighbors for the strong union
NUNs is greater than that of the selective union N{UNs. However, this trend
only lasts for the first 1000 local search iterations and then the percentage of
improving neighbors for N;LINy decreases dramatically during the following 300
iterations. On the other hand, the percentage of improving neighbors for N;UN,
decreases quite slowly during the first 1500 iterations. In other words, N1UN,
offers more opportunities to find improving neighbors, especially after the first
iterations of the search (first 1000 iterations for this particular instance). When
starting from a random initial solution even poor neighborhoods can have a
certain number of improving neighbors at the first iterations while only good
neighborhoods offer improving neighbors when the search progresses.

On the other hand, compared with N1LIN,, there exist long tails for the per-
centage of improving neighbors for the selective union N1UN, meaning that it
allows the descent algorithm to run a larger number of iterations. This property
is another important indicator of good neighborhoods. We argue that one neigh-
borhood with longer search steps has more potential to improve the solution
quality in the long run than one with shorter search steps.

We then evaluate the two neighborhood unions using the improvement strength
criterion. Figure 2 presents how the improvement strength of each neighborhood
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evolves with the local search iterations. It shows that these two neighborhood
unions have quite similar evolving trends in terms of the average improvement
strength. Once again, one observes that at the beginning of the search, the im-
provement strength of NjUNs is greater than that of N;jUN,. However, it only
lasts for a small number of iterations (the first 600 iteration in this particular
case). This can be explained by the fact that NiLIN; simultaneously consid-
ers two neighborhoods N; and Ny while NyUN, only randomly chooses one
neighborhood. Nevertheless, as the algorithm progresses (after the first 600 it-
erations), the N1UN> neighborhood offers much greater improvement strength
than N1UN5. This phenomenon correlates well with the trend of the percentage
of improving neighbors.
Based on these observations, we formulate the following conclusions.

1. Neighborhood union N;UN; induces a higher percentage of improving neigh-
bors and greater improvement strength than NNy after the first iterations
of the search. As a result, N1UN> offers more choices for the search algorithm
to improve the current solution at each iteration once the initial iterations
are completed.

2. Neighborhood NijUNs offers improving neighbors for a larger number of
iterations than N;LIN,. Consequently, local search can continue for a larger
number of iterations with N;UNs.

3. Although neighborhood N;LN; offers a higher percentage of improving neigh-
bors and greater improvement strength during the first iterations, its im-
provements quickly disappear, limiting its search capability.

We also repeated this experiment with the TS algorithm described in Section
4.2 and reached similar conclusions.

6 Conclusions and Discussions

In this paper, we compare and analyze two basic neighborhoods (one-flip and
two-flip) and three neighborhood combinations (selective union, strong union
and token-ring search) for the UBQP problem. The computational results show
that the best outcomes are achieved with the selective union N7UNs, followed
by using the new Ny neighborhood by itself.

We employ three evaluation criteria to explain why the selective union N1UN,
performs much better than the strong union N;UN,, yielding an experimental
analysis that sheds light on the relative advantages and weaknesses of the neigh-
borhoods N7 and Ny and various possibilities for combining them. Our findings
are anticipated to have useful implications for combining neighborhoods in other
applications, particularly when presented a choice between the use of selective
unions and strong unions.

Some important questions remain.

1. These results are based on random instances. It would be interesting to know
whether these results would be confirmed for problems that exhibit special



structures of various types. To this end, a sequel to this study will carry out
additional experiments using more diverse instances transformed from other
problems.

2. It would be useful to identify the conditions under which a particular neigh-
borhood or a neighborhood combination is preferable.

3. More importantly, it would be valuable to explore higher order neighbor-
hood moves (e.g., three-flip or even higher flip moves). As observed in [14],
there exits a natural way to extend the above mentioned fast two-flip move
evaluation techniques to these higher order moves.

4. Tt would be worthwhile to investigate other ways of combining the neigh-
borhoods, particularly with the inclusion of higher order flip moves. For
example, we may consider “conditional” combinations where moves from a
lower order neighborhood pass certain screening criteria as a foundation for
becoming components of moves in higher order neighborhoods.

We anticipate that answers to these issues will provide information that will
be valuable for the design of improved algorithms. Finally, given that the neigh-
borhood combination strategies and the neighborhood evaluation criteria dis-
cussed in this paper is independent of the UBQP problem, they can be used to
evaluate neighborhood relations of other combinatorial optimization problems.
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